Эрмитова форма - Definition. Was ist Эрмитова форма
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Эрмитова форма - definition

Эрмитовое пространство

Эрмитова форма         

выражение вида

,

где akt = atk (а - число, комплексносопряжённое с а). Матрица, составленная из коэффициентов Э. ф., называется эрмитовой; линейное преобразование, задаваемое эрмитовой матрицей, называется эрмитовым. Вопрос о представлении целых чисел Э. ф. при целочисленных значениях аргументов исследовал Ш. Эрмит (1854). Теория Э. ф. во многом аналогична теории квадратичных форм (См. Квадратичная форма). См. также Эрмитов оператор.

Эрмитова форма         
Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий СильвестраШафаревич И.
Форма (лингвистика)         
ЯЗЫКОВОЙ ЗНАК, В КОТОРОМ ТЕМ ИЛИ ИНЫМ ГРАММАТИЧЕСКИМ СПОСОБОМ ВЫРАЖАЕТСЯ ГРАММАТИЧЕСКОЕ ЗНАЧЕНИЕ
Словоизменительная форма; Грамматическая форма
Граммати́ческая фо́рма — языковой знак, в котором тем или иным грамматическим способом (иначе говоря, регулярно, стандартно) выражается грамматическое значениеЛопатин В. В.

Wikipedia

Эрмитова форма

Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий Сильвестра.